Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Adicionar filtros

Ano de publicação
Tipo de documento
Intervalo de ano
1.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.05.18.444675

RESUMO

Spike (S) proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are critical determinants of the infectivity and antigenicity of the virus. Several mutations in the spike protein of SARS-CoV-2 have already been detected, and their effect in immune system evasion and enhanced transmission as a cause of increased morbidity and mortality are being investigated. From pathogenic and epidemiological perspectives, spike proteins are of prime interest to researchers. This study focused on the unique variants of S proteins from six continents Asia, Africa, Europe, Oceania, South America, and North America. In comparison to the other five continents, Africa (29.065%) had the highest percentage of unique S proteins. Notably, only North America had 87% (14046) of the total (16143) specific S proteins available in the NCBI database(across all continents). Based on the amino acid frequency distributions in the S protein variants from all the continents, the phylogenetic relationship implies that unique S proteins from North America were significantly different from those of the other five continents. Overtime, the unique variants originating from North America are most likely to spread to the other geographic locations through international travel or naturally by emerging mutations. Hence it is suggested that restriction of international travel should be considered, and massive vaccination as an utmost measure to combat the spread of COVID-19 pandemic. It is also further suggested that the efficacy of existing vaccines and future vaccine development must be reviewed with careful scrutiny, and if needed, further re-engineered based on requirements dictated by new emerging S protein variants.


Assuntos
COVID-19
2.
preprints.org; 2021.
Preprint em Inglês | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202101.0297.v1

RESUMO

Therapeutic options for the highly pathogenic human Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) causing the current pandemic Coronavirus disease (COVID-19) are urgently needed. COVID-19 is associated with viral pneumonia and acute respiratory distress syndrome causing significant morbidity and mortality. The proposed treatments for COVID-19, such as hydroxychloroquine, remdesivir and lopinavir/ritonavir, have shown little or no effect in the clinic. Additionally, bacterial and fungal pathogens contribute to the SARS-CoV-2 mediated pneumonia disease complex. The antibiotic resistance in pneumonia treatment is increasing at an alarming rate. Therefore, carbon-based nanomaterials (CBNs), such as fullerene, carbon dots, graphene, and their derivatives constitute a promising alternative due to their wide-spectrum antimicrobial activity, biocompatibility, biodegradability and capacity to induce tissue regeneration. Furthermore, the antimicrobial mode of action is mainly physical (e.g. membrane distortion), which is characterized by a low risk of antimicrobial resistance. In this review, we evaluated the literature on the antiviral activity and broad-spectrum antimicrobial properties of CBNs. CBNs had antiviral activity against 12 enveloped positive-sense single-stranded RNA viruses similar to SARS-CoV-2. CBNs with low or no toxicity to the humans are promising therapeutics against COVID-19 pneumonia complex with other viruses, bacteria and fungi, including those that are multidrug-resistant.


Assuntos
Infecções por Coronavirus , Síndrome do Desconforto Respiratório , Pneumonia Viral , Pneumonia , Síndrome Respiratória Aguda Grave , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , COVID-19
3.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.11.06.372227

RESUMO

The coronavirus disease 2019 (COVID-19) is caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) which is pandemic with an estimated fatality rate less than 1% is ongoing. SARS-CoV-2 accessory proteins ORF3a, ORF6, ORF7a, ORF7b, ORF8, and ORF10 with putative functions to manipulate host immune mechanisms such as interferons, immune signaling receptor NLRP3 (NOD-, LRR-, and pyrin domain-containing 3) inflammasome, inflammatory cytokines such as interleukin {beta} (IL-1{beta}) are critical in COVID-19 pathology. Outspread variations of each of the six accessory proteins of all complete proteomes (available as of October 26, 2020, in the National Center for Biotechnology Information depository) of SARS-CoV-2, were observed across six continents. Across all continents, the decreasing order of percentage of unique variations in the accessory proteins was found to be ORF3a>ORF8>ORF7a>ORF6>ORF10>ORF7b. The highest and lowest unique variations of ORF3a were observed in South America and Oceania, respectively. This finding suggests that the wide variations of accessory proteins seem to govern the pathogenicity of SARS-CoV-2, and consequently, certain propositions and recommendations can be made in the public interest.


Assuntos
Infecções por Coronavirus , COVID-19
4.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.11.06.368191

RESUMO

The COVID-19 pandemic has prompted the search for animal models that recapitulate the pathophysiology observed in humans infected with SARS-CoV-2 and allow rapid and high throughput testing of drugs and vaccines. Exposure of larvae to SARS-CoV-2 Spike (S) receptor binding domain (RBD) recombinant protein was sufficient to elevate larval heart rate and treatment with captopril, an ACE inhibitor, reverted this effect. Intranasal administration of SARS-CoV-2 S RBD in adult zebrafish recombinant protein caused severe olfactory and mild renal histopathology. Zebrafish intranasally treated with SARS-CoV-2 S RBD became hyposmic within minutes and completely anosmic by 1 day to a broad-spectrum of odorants including bile acids and food. Single cell RNA-Seq of the adult zebrafish olfactory organ indicated widespread loss of expression of olfactory receptors as well as inflammatory responses in sustentacular, endothelial, and myeloid cell clusters. Exposure of wildtype zebrafish larvae to SARS-CoV-2 in water did not support active viral replication but caused a sustained inhibition of ace2 expression, triggered type 1 cytokine responses and inhibited type 2 cytokine responses. Combined, our results establish adult and larval zebrafish as useful models to investigate pathophysiological effects of SARS-CoV-2 and perform pre-clinical drug testing and validation in an inexpensive, high throughput vertebrate model.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave
5.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.10.09.332908

RESUMO

BACKGROUNDSince the first reports of COVID-19, decision-makers have been using traditional epidemiological models to predict the days to come. However, the enhancement of computational power, the demand for adaptable predictive frameworks, the short past of the disease, and uncertainties related to input data and prediction rules, also make other classical and machine learning techniques viable options. OBJECTIVEThis study investigates the efficiency of six models in forecasting COVID-19 confirmed cases with 17 days ahead. We compare the models autoregressive integrated moving average (ARIMA), Holt-Winters, support vector regression (SVR), k-nearest neighbors regressor (KNN), random trees regressor (RTR), seasonal linear regression with change-points (Prophet), and simple logistic regression (SLR). MATERIAL AND METHODSWe implement the models to data provided by the health surveillance secretary of Amapaa, a Brazilian state fully carved in the Amazon rainforest, which has been experiencing high infection rates. We evaluate the models according to their capacity to forecast in different historical scenarios of the COVID-19 progression, such as exponential increases, sudden decreases, and stability periods of daily cases. To do so, we use a rolling forward splitting approach for out-of-sample validation. We employ the metrics RMSE, R-squared, and sMAPE in evaluating the model in different cross-validation sections. FINDINGSAll models outperform SLG, especially Holt-Winters, that performs satisfactorily in all scenarios. SVR and ARIMA have better performances in isolated scenarios. To implement the comparisons, we have created a web application, which is available online. CONCLUSIONThis work represents an effort to assist the decision-makers of Amapa in future decisions to come, especially under scenarios of sudden variations in the number of confirmed cases of Amapa, which would be caused, for instance, by new contamination waves or vaccination. It is also an attempt to highlight alternative models that could be used in future epidemics.


Assuntos
COVID-19
6.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.10.08.332452

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is the cellular receptor for the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that is engendering the severe coronavirus disease 2019 (COVID-19) pandemic. The spike (S) protein receptor-binding domain (RBD) of SARS-CoV-2 binds to the three sub-domains viz. amino acids (aa) 22-42, aa 79-84, and aa 330-393 of ACE2 on human cells to initiate entry. It was reported earlier that the receptor utilization capacity of ACE2 proteins from different species, such as cats, chimpanzees, dogs, and cattle, are different. A comprehensive analysis of ACE2 receptors of nineteen species was carried out in this study, and the findings propose a possible SARS-CoV-2 transmission flow across these nineteen species.


Assuntos
COVID-19
8.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.09.06.284976

RESUMO

The global public health is endangered due to COVID-19 pandemic, which is caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Despite having similar pathology to MERS and SARS-CoV, the infection fatality rate of SARS-CoV-2 is likely lower than 1%. SARS-CoV-2 has been reported to be uniquely characterized by the accessory protein ORF10, which contains eleven cytotoxic T lymphocyte (CTL) epitopes of nine amino acids length each, across various human leukocyte antigen (HLA) subtypes. In this study, all missense mutations found in sequence databases were examined across twnety-two unique SARS-CoV-2 ORF10 variants that could possibly alter viral pathogenicity. Some of these mutations decrease the stability of ORF10, e.g. I4L and V6I were found in the MoRF region of ORF10 which may also possibly contribute to Intrinsic protein disorder. Furthermore, a physicochemical and structural comparative analysis was carried out on SARS-CoV-2 and Pangolin-CoV ORF10 proteins, which share 97.37% amino acid homology. The high degree of physicochemical and structural similarity of ORF10 proteins of SARS-CoV-2 and Pangolin-CoV open questions about the architecture of SARS-CoV-2 due to the disagreement of these two ORF10 proteins over their sub-structure (loop/coil region), solubility, antigenicity and change from the strand to coil at amino acid position 26, where tyrosine is present. Altogether, SARS-CoV-2 ORF10 is a promising pharmaceutical target and a protein which should be monitored for changes which correlate to change pathogenesis and clinical course of COVID-19 infection.


Assuntos
COVID-19
9.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.08.25.267328

RESUMO

Immune evasion is one of the unique characteristics of COVID-19 attributed to the ORF8 protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This protein is involved in modulating the host adaptive immunity through downregulating MHC (Major Histocompatibility Complex) molecules and innate immune responses by surpassing the interferon mediated antiviral response of the host. To understand the immune perspective of the host with respect to the ORF8 protein, a comprehensive study of the ORF8 protein as well as mutations possessed by it, is performed. Chemical and structural properties of ORF8 proteins from different hosts, that is human, bat and pangolin, suggests that the ORF8 of SARS-CoV-2 and Bat RaTG13-CoV are very much closer related than that of Pangolin-CoV. Eighty-seven mutations across unique variants of ORF8 (SARS-CoV-2) are grouped into four classes based on their predicted effects. Based on geolocations and timescale of collection, a possible flow of mutations was built. Furthermore, conclusive flows of amalgamation of mutations were endorsed upon sequence similarity and amino acid conservation phylogenies. Therefore, this study seeks to highlight the uniqueness of rapid evolving SARS-CoV-2 through the ORF8.


Assuntos
COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA